Training Guide
The current training guide targets the v0.9 Windows executable that ships with built-in ML-Agents.
A forthcoming v1.0 (July,1 2025) will provide a stand-alone Python API (no ML-Agents) + headless Linux builds for cluster training
Follow the numbered sections below to install dependencies, launch training, add your own model, and locate results.
1 · Download Environment
Download environment MouseVsAI_Windows_v0.9.zip
2 · Install Miniconda †
† Skip this section if you already have Anaconda or Miniconda.
a) Download the installer:
curl -o Miniconda3-latest-Windows-x86_64.exe ^
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
b) Silent install
start /wait "" Miniconda3-latest-Windows-x86_64.exe ^
/InstallationType=JustMe /AddToPath=1 /RegisterPython=1 /S ^
/D=%USERPROFILE%\Miniconda3
c) Activate
%USERPROFILE%\Miniconda3\Scripts\activate
Check installation:
conda --version
3· Create and activate the training environment
cd <folder‑with‑exe-and-mouse.yml>
conda env create -n mouse2 -f mouse.yml
conda activate mouse2
One‑time path fix
Open train.py and replace the placeholder path to encoders.py with the actual path inside your environment, e.g.
C:/
4· Run the training script
python start.py
The script prints usage:
Usage: python start.py [train|test] [options]
--runs-per-network R
--run-id ID
--networks N1,N2,N3 (fully_connected, nature_cnn, simple, resnet)
The script prints usage:
python -u start.py train ^
--runs-per-network 1 ^
--run-id Normal ^
--network neurips,simple,fully_connected
5· Customise the model
Add your custom encoder to the Encoders/ directory. Optionally tweak hyper‑parameters in nature.yml (keep vis_encode_type: nature_cnn). Re‑run the command from § 4.